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ABSTRACT 

Lattice gauge theories in two dimensions are studied with regard 

to investigating the continuum limit. The effective interaction is calculated 

for the lattice gauge theories for QED (U(1)) and SU(N) to all orders in 

the gauge coupling and shown to reproduce the usual Schwinger and ‘t Hooft 

models, respectively, in the limit of zero lattice spacing. However, 

lattice gauge theories in strong coupling have, ifi general, qualitatively 

different S matrices than their expected continuum analogs. Except for 

the SU(N) lattice gauge theory in the formal limit N e a, gzN fixed, the 

lattice introduces additional four-or-more-body forces which are not present 

in the continuum. 
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1. INTRODUCTION 
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There is considerable interest in lattice formulations of gauge 

theories. 
1-9 

The major reason for this interest is that they provide a gauge ~.~- -- --- __. 

invariant description of quark confinement. A central question in their 

study is the nature of the continuum limit. While lattice gauge theories 

are designed to give the correct continuum limit for the classical lattice 

theory of quarks and gauge fields, the continuum limit of the quantum 

theory is a crucial problem. 

In this paper, we study two-dimensional lattice gauge theories of 

quarks and lattice gauge fields in order to gain insight into the relationship with 

the continuum theory. In particular, we consider the QED (U(l))and SU(N) 

lattice gauge theories as formulated by Wilson on a space-time lattice. 

The effective interaction is calculated and shown to reproduce the usual 

continuum Schwinger 
IO-1X_ 

and ‘t Hooft i4-16 models respectively in the limit of 

zero lattice spacing when the correct physical quantities are held fixed. 

We show that if the lattice spacing a is taken to zero holding the bare 

lattice coupling constant go fixed, the lattice models become the usual 

continuum models with a coupling constant go. This behavior is expected 

because the two-dimensional continuum models are superrenormalizable 

and there is no coupling constant renormalization. In addition, we 
_ .-.~ 

define a physical two-body coupling constant gR2 and take the limit a 4 0 

holding gR2 fixed. Then we show that go2(a) -+ gR2 as a =+ 0 and the 

dimensionless two-dimensional coupling constant cro = go2(a)a2/4rr -t 0 

as a -+ 0 as expected. 
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We show that in general the lattice introduces additional 

multibody forces which are not present in the continuum. The only 

exception is the SU(N) lattice gauge model in the formal limit N * 00, 

go2N fixed which is a theory of non-interacting bound states for any value 

of go2 N like the ‘t Hooft model to leading order in N. But for finite N, 

the lattice introduces additional forces for sufficiently large distances. 

For a quark loop of area A, these multibody forces arise for areas of the 

order of g R-21n N or larger. The presence of these forces imply two 

things. First, th,eS matrix computed in strong coupling is, in general, 

qualitatively different than the continuum S matrix. Second, the lattice 

does not merely act as an ultraviolet cutoff because the additional . 

forces modify the infrared behavior. 

In Sec., II we present a brief review of the space-time lattice gauge 

theory formalism. Its purpose is mostly to define the notations used and 

the Feynman graph rules. In Sec. III, we formulate the ‘t Hooft and Schwinger 

models as potential theories on a lattice. We calculate the contribution 

of quark loops for the purpose of direct comparison to the lattice gauge 

formalism. Sec. IV presents a discussion of Migdal’s theorem and how 

a comparison of the potential and gauge models leads to the definition 

of a renormalized charge. Interacting quark loops are studied in Sec. 

V. In Sec. VI we discuss the details and problems of the continuum 

limit. Finally, our conclusions are presented in Sec. VII. We include 

an appendix listing some properties of Fourier coefficients. 
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II. REVIEW OF LATTICE GAUGE THEORIES 

As an approach to the solution of quantum chromodynamics, Wilson 1, 2’ 

formulated the gauge theory on a cubic space-time lattice as follows. 

First, change from Minkowski to Euclidean space (t 4 i t 1, then discretize 

both space and time, x = 
I-L 

(noa. nla, n2a, n3a), ni = 0, *1, *2. . . where 

a is the lattice spacing. Of course, introduction of the lattice destroys 

Lorentz (i. e. Euclidean) and even rotational i.nvariance, but we expect 

they will be restored as a - 0. The restoration of Euclidean invariance 

in the continuum limit has been shown for free field theories 2 
and the Ising 

model. 
17 

However, if the classical continuum action is naively discretized 

using finite differences, then it would not be gauge invariant. Because 

of the vagaries of renormalization, the quantized theory might still lack 

gauge invariance in the limit a 4 0. A possibly better idea is to add terms 

to the action which vanish as a - 0 but make the action gauge invariant 

for any a. The result is 

(2.1) 

+ 
ad - 4 

c 
n, p< v n + fi, v u+n+Z p”+ t n, v ) 
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where U = e 
igoaA>)Ta 

, 
nP 

Ta are the generators of the gauge group 

in the fermion representation, and d is the number of space-time 

dimensions. We have absorbed an irrelevant change of scale into the 

fermion fields. The terms T U 4 
n n,t-+p 

are included to make the free 

fermion energy single valued within a single Brillioun zone. The 

constant K is related to the bare quark mass. Now consider the 

path integral formulation of the generating functional for disconnected 

Green’s functions. Since the action is periodic as the vector field ranges 

over the gauge group, we can restrict the integration to over only one 

_ cycle of the group. Thus we have 

6..d 9 n 

ad - 4 
+ z (2.2) 

2g02 n,p < v 

where v is an element of SU(N), dv is an invariant measure 
w ntJ 

normalized to unit volume, and U(v) and x q(v) are the matrix and 

character, respectively, in the fundamental (quark) representation 

corresponding to the element v. The implications of this new theory 

are many. First of all, if we do not fix a gauge (andwe do not in all that 

follows) then the expectation value of any gauge noninvariant quantity 

7 
is zero. For example, 
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.qvnp)> = z(o)-’ IIdvIId Td VJ(v,Je A& 
- 0 (2.3) 

Likewise we have 

S n0 
= <Qo> (Y 6 

nO * (2.4) 

S 
n0 

resembles a free propagator only if we set all U(v) 3 1. In general, 

only local color singlet states propagate through the lattice. Hence, 

they are the only physically observable states. 

Note that the fact that only color singlets propagate does not mean 

quark confinement since it is true even without any gauge field self-interaction 

term. The essence of confinement is the suppression of quark loops with 

large enclosed areas. Without this suppression the quark’s exotic flavor 

quantum numbers could be detected. 

In order to calculate Green’s functions we write down a set of spatial 

lattice Feynman rules for color singlet sources. Expand the exponential 

of the fermion kinetic action in powers of K and integrate over the fermion 

fields . The rules then are: 

1) Diagrams consist of quark loops. A quark loop consists of a set 

of connected quark links. A quark link is a line segment connecting nearest 

neighbor sites and labeled with an arrow. 
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2) For a quark link from n to n + 2 writeK(1 + y )Us 
P nP,” 

For a quark 

link from n + c to n write K(1 - yP)U 
w’ 

3) A factor I at site n for insertion of a source vnI+ . n 

4) Take both y matrix and color traces. 

5) A factor I/4 for an internal loop containing 4 links. A factor 

l/m! for m identical superimposed loops . 

/ I 

d- 4 
6) Integrate dv4exp ?+- 

2g0 

7) Sum over all possible quark loops containing the sources. 

III. ‘T HOOFT AND SCHWINGER MODELS ON A LATTICE 

In this section, we write down a discretized version of the continuum 

f t Hooft and Schwinger models. Because they are just superrenormalizable 

potential models, we make the very reasonable assumption that the continuum 

limits of the discretized models are just the usual continuum models. 

We regard this assumption as harmless because the form of discretization 

we use is merely a way of giving a concrete definition to the functional 

path integral formalism. 
18 The only way in which these discretized 

potential models differ from just a discretization of the path integral 

formalism is the probably necessary way in which the fermion fields are 

included following Wilson. We use these discretized potential models 

to make direct comparison to the lattice gauge theories. 



-8 - FERMILAB-Pub-76/43-THY 

The Lagrangian density of the continuum theory is given by 

P” 
+ YjT (i +- m)$ + i g’$Fij+j (3.1) 

where APij(x) = TaijAPa(x) and G ij = 8 A ij 
PV PV 

+ gpP, AvlijO Choosing 

the gauge A1 = 0 we find the equation of motion 

2 ij= ’ * 
a4 Ao -duo Q * (3.2) 

Thus, in two dimensions, the above theory is equivalent to 

2 = ;i;(x)(i,Z- m) G(x) + -$ g2 / d2y $x,i y. +j(x)A(x - Y)Tj(Y)Yo 4Ji(y) (3. 3) 

where A(x - y) = $(x0 - yo)(xI - y1 I. Now we discretize this Lagrangian 

in the manner of Wilson and write for the action of this lattice potential 

model 

A = - z Tn$n + KIZ 11;1(1. - Y NJ - 
n nlJ 

~ n + p + 4Jn +p’i + yJn 1 
(3.4) 

where A nm 
=$d 

nom* I l-5 - m*l ’ 

We have neglected the possible background electric field for the Schwinger 

model 
13 because it is not present in the usual lattice gauge theories, 
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Since we know that the physical sector of the ‘t Hooft and Schwinger 

models is the (color) charge zero sector of the theory (the charge non-zero 

sector may not even exist), we may concern ourselves in the lattice 

potential model with Green’s functions of color singlet sources only. 

To calculate these Green’s functions, we write down a set of spacetime 

Feynman rules D By taking the generating functional in the path integra.t 

representation, expanding the exp,onent i al in powers of K and g, and 

integrating over the fermion fields, we obtain the following rules: 

1) Diagrams consist of quark loops and gluon exchanges. A quark 

loop consists of a set of nearest neighbor quark links. 

2) For a quark link from site n to n + p write 6.. K(I - yP). For a 
1J 

quark iink from site n + $I to n write sijK(l + yP). i and j are color 

indices. 

3) A factor I? at site n for the insertion of a source $n?C$n. 

4) A factor I/I for an internal loop with B links. A factor I/m! 

for m identical superimposed loops. 

5) A factor gay0 for every gluon quark quark vertex. A factor 

6. .A 
1~ nm 

for a gluon exchange between vertices at n and m. 

6) A factor l/p! for p gluon exchanges. 

7) Take both y matrix and color traces. 

8 ) Sum over all possible quark loops containing the sources and 

over all possible gluon exe hanges . 
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Now we proceed to calculate quantities with whi& we will make direct 

comparison to the lattice gauge theory. Consider a single quark loop 

as shown in Fig. 1. We write for the contribution of this quark loop 

without any gluon exchange 

~&o(v) = NKPV 
(3.5) 

where v denotes the particular quark loop ahd PV is the number of quark 

links in the quark loop. 

The amplitude for the exchange of one gluon from point n to m 

within the quark loop v is given by 

#4nm(v) = Kpv Tr i(l* Ypl)*-(l+ yII1)Yo(~*Ypn+l)**.(**Y$JYo 

(3.6) 

N2g2a2Anm ( i*Y 
kin+ I 

0 . D 
> ( 

j*:y 
I.l.Pv > 

Now observe that with only a few exceptions, we can eliminate the yols 

in the y matrix trace and writednm( v in terms of the no gluon amplitude ) 

(3.7) 

where r7 = 0, *I depending only on where the vertex at n is within the 
n 

quark loop. For example, for a vertex between two links in the x0 

direction we have a factor 
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(1 + yo)yoP -I- Y()) = +I (1 -I- Yo)(l -I- Yo> (3.8) 

and n = +1 for this vertex. Note that we have a Euclidean metric for y 

matrices, {y $ YJ = 2 hpv* A list of vertices for which n exists and the 

respective value of rl is shown in Fig. 2(a) - (c). For a one gluon exchange 

graph, ?I does not exist for the configurations in Fig. 2(d). Also, when 

a vertex is at the same site as a source then r) exists if the vertex is 

adjacent to a link in the fxo direction and equals *1 respectively, otherwise 

q does not exist. Consequently, if we consider a quark loop configuration 

for which n exists along every site along the quark path, we can write 

the sum over all single gluon exchanges as 

yi(v) =~o(v)g2a2N $ Z ‘n nmAnm* (3.9) 
.nm mv 

Contributions for which r7 does not exist merely add small correction terms 

to this result. Consider a quark loop v with large fixed area Av. For 

fixed g and vanishing a, the sum in Eq. 3.9 gives a contribution proportional 

to Avs but the corrections give contributions proportional to aL1 where 

Lf is some fixed length. Consequently, the correction terms due to vertices 

for which n does not exist, are negligible for large loop areas or equivalently 

small lattice spacing. 
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This expression is valid for QED and the ‘t Hooft model for N + Q), 

g2N fixed. For finite N, this formula neglects terms down in 1/N. 

It also neglects all small correction terms because once again they are 

negligible for large areas. 

Consequently, the,sum over all gluon exchanges for a single quark 

loop v is 

,/f(v) = lML(v) =Jo(v) exp 1: g2Na2 nZ& n, nmAnm m (3.11) 
L=O in v 

Observe that the gluon contribution is almost identical to the expectation 

value of a single quark loop in an Abelian continuum gauge theory (in 

Euclidean space) 

dx’A’(x >] > 1 gauge ‘fields 

(3.12) 

= dyPAPv(x - Y) 1 
where A (x - y) is the free gluon propagator. By comparison, it is 

PL” 

easy to see now that the role of the r) factor is as a unit vector tangent 

to the quark path. 

Finally, for a large non-overlapping single quark loop w-ith area 

A >> a2, we have for the lattice potential theory 
V 
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* IZ N N A 
nm n m nm 

r -5 Av/a2 . 
in v 
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(3.13) 

And the total contribution of this single quark loop is 

2 

A?iv) =Mo(v) e 
-3 g NAV 

(3.14) 

IV. MIGDAL’S THEOREM AND THE RENORMALIZED CHARGE 

In this section we calculate the contribution of a quark loop in the 

lattice gauge theory to all orders in the gauge coupling. A comparison 

to the lattice potential models will then lead to a definition of a renormalized 

charge. 

Consider a single box as shown in Fig. 3 (a). We write its contribution 

to the generating functional as 

z(1) 
(v) = exp 

I 

g: 
xqw +xqw =XZdx (v) 

p PPP 
(4.1) 

where Zp is the Fourier component of Z (I) (v) in the pth irreducible 

representation of the lattice gauge group (U(1) or SU(N)) and d p = x.p(I) is 

th 
the dimension of the p-representation. Zp is given by 

Z =d-4 
P P I 

dvX c 
p (v)Z%) = z + 

( ) p go a 
(4.2) 
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Now consider what happens when we combine two connected boxes 

and integrate over the common link as in Fig. 3(b) 

Z (‘)(v) z 1 dv Z(‘)(v,v)Z(‘)(v +v2) 

= P$2 
Z d Z d 

PI PI P2 p2 / 
dvx 

p1 
(v,v)x 

P2 
(v+-v2 ) (4.3) 

= ITi Z 2d x (v v ). 
P P PP 12 

We have used the orthogonality theorem for characters 

/ 
dv x (v,v)x (v=,) = 6 d -1 

PI P2 plp2 PI PI 
x (v1v2) (4.4) 

Consequently, if we combine four boxes as in Fig. 3(c) by integrating out 

the internal links we get 

z(4) 
(v) = fj Zp4dpxpW (4.5) 

where v is the product contour around the perimeter. Thus, for an 

arbitrary combination of n connected boxes 

Ztn)(v) = Zl Z An’a2d X (v) 
P P P P 

(4.6) 

where An is the area enclosed by the perimeter product contour v. This 

is Migdal’s theorem which is very useful for studying the two dimensional 

problem. 



-15- FERMILAB-Pub-761439THY 

Our boundary conditions are chosen as a large box of area A. 

Then the contribution of the gauge fields to the generating functional in 

the absence of sources is 

z = 
s 

n dv I 1 :: 

links I I exp / 2 2 ) 
2g() a = [ boxes b 

xqtVb) + x tv 
q b 

‘I 

= 
I 

dv 2 Z A’a2 d x (v ) 
PPi PI plpl p 

(4.7) 

= ZoAla2 

The expectation value of a particular contour is (see Fig. 4 for notation) 

cx (v+) > = z -I 
P s 

a-dv, xp(v+)exp 
1 I 

1 :k 
22cx (v)+x (VI 

2go a b qb [ q b 
‘I 

= zo-A/a2 
I dv~dvBdv = ’ 

(A - Av )/a2, 

p1 PI p1 
(4.8) 

xpl 
(v+vBvpvB+); Zp Ad,2,p 

2 2 
xp 

2 2 
(v)xp(v+) 

= d 
( zp’ zo) 

AJa' 
P 
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where Av is the area inside v. This is Wilson’s law of areas. Since 

Z < Z. large areas are exponentially suppressed. Now consider the 
P 

contribution of a singlIe quark loop v to a Green’s function. Using the 

Feynman rules of Sec. II we write 

A(v) =Kpv Tr 

DdUp Tr U 
{ I 

+ p1,p2’ l - 
U 

n+p...+p,-p 1 
Pv Pv 

> 

1 :;: II 
(4.9) 

exp 

2g0 ’ a2 
g t-x q(vb) 

N-*2$(v) < xq(v)> =Ao(v)e q’gR 
2 

= NAv 

where AJv) is th e same (Eq. 3. 5) for the lattice potential theory, and we 

have defined the renormalized charge 

gR 2N = 2 mm 
a2 

ln c 

1 
Z- \ 

q go2a2/ 

zo/+ 
L ) go a 

(4.. 10.1 

The qualitative behavior of gR2 is shown in Fig. 5. By comparison with 

Eq. 3. 14, we see that the contributions of single quark loops in the lattice 

gauge theory are precisely the same as in a lattice potential model with 
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coupling gR2. Therefore, for the quark-antiquark sector of the theory, 

the lattice gauge theory acts like the usual respective It Hooft and Schwinger 

models with coupling gR2. 

V. INTERACTING LOOPS 

In this section ,’ we consider the contribution of overlapping loops 

in both the lattice gauge and potential models. First consider the 

lattice gauge theory. The contribution of two overlapping quark loops 

as in Fig. 6(a) is written 

&qvi, v2) = N-2~o(~1&@2) <xq(V1)xq(V2)’ (5.1) 

The expectation value can be written 

<x (v lx (v P = z. 
-(Ai + A2 + A3)/a2 

q 1 q 2 s 
dvlodvlldvZodvZ1 

ZZ 
pi PI 

A”a2dpi xp+ (vio+v;+) pf: LpzA2ia” dp2xp2 (vii=,i) 

ZZ 
p3 p3 

A3’aZdp3 %3(v;+v2i’) xq(yloyli) xq(vzovzi) 

(5.2) 
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(If3 th 
where C 

P 
is the Clebsch-Gordon coefficient for finding the p- representatior. 

within the q@ q representation. Consequently, we have for overlapping 

quark loops 

-+ g,‘N(A, + A3) ‘NA 
= ~o(v1~(v2)e N-‘xC qS,+‘p ‘d 

PP P 
(5.3) 

Z 
where gp2N = - -$-In $ , 

0 
gj2 z gR2) . 

a 

Now consider the contribution of interacting loops for the latticized U(1) 

potential model. Define the charge configuration and dist antes as shown 

in Fig. 6(b). The potential energy for this configuration iS 

-(dl+d2)+(dl+d2+d3)+d2-(d2+d3)+d3 
I 

= -g2(di + d3) 

And so this gives a contribution 

(5.4) 

3 

Ab(V1’ v2) = Mobi L4$v2 )e 
-5 gutA1 + A31 

(5.5) 

which is the same as in the U(1) lattice gauge theory. The same argument 

applies to Fig. 6(c) which gives the same as above which again agrees with 

the U(1) lattice gauge theory. 
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However, consider a situation like that in Fig. 6(d) with adjacent 

charges of the same sign. We have 

Vd = -g2 -dl+(dl+d2)+(dl+d2+d3)+d2+(d2+d3)-d 
3 1 

= -g’(d, + 4d2 + d3) 

And the amplitude for these overlapping quark loops is 

JiH = h$(vl L44$tv2)e 
-f g’(A, + 4A2 + A3) 

potential 

This does not agree with the U(1) lattice gauge theory which is 

A$? = dfV1 *fv2)e 
-5 g,‘!A, +A3) - $ gz2A2 

gauge 

(5.6) 

(5.7) 

(5.8) 

Defining gez2 = hgR2 - g22 = 

We have M gauge’~otential = eaggeizzA2 - This new coupling is a 

consequence only of the lattice gauge formalism. It introduces a new four 

quark force which is not present in the continuum whenever there is a 

quark loop configuration like that in Fig. 6(d). 

We can mock up a contribution to the continuum action which would 

reproduce this additional force as follows. Define Q(z, t ) = 
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co 

/ -mck Q(z - x)p(x, t) where p(x, t) is the charge density operator. 

Fig. 6(d) contributes whenever cQ> = *2 in a spatial region with length 

equals to. d2. All the other configurations like Figs. 6(b) and (c) 

give <Q> = 0 or *I. So an interaction Lagrangian which would reproduce 

the amplitude J&? ’ gauge Is 

‘82.’ 

aJ 

L - 
extra= 12 

dz’ Q2(z’ , t) Q’b’ , t)-1 1 

g .2 
e2 =- 
.12 dxdy PQ, t)p(y, t) x - y I I (5.9) 

+ dwdxdydz p(w, t)p(x, t)p(y, t)p(z, t)V(w, x, y, z) 1 
/ co 

where V(w, x, y, z) Z dz’ 8 (z’ - w)eJ(z’ - x)e(y - z’)f3(z - z’) . 
--CD 

For a - 0 go2 fixed g,; -t 0, but for strong coupling gez2 # 0 and gives 

an S matrix qualitatively different from the continuum S matrix. Likewise 

the lattice gauge interaction of three or more quark loops introduces 

additional six or more quark forces which are not present in the continuum. 

The additional couplings they introduce vanish as a * 0 with go2 fixed, 

but not for strong coupling. 

Now consider the SU(N) lattice potential model. Since to leading 

order in N loops are noninteracting we have for the configuration in 

Fig. 6(a) 



-2i- FERMILAB-Pub-761439THY 

d&v,, v2) =) do(vi )&(v, )e 
-+ g’(A, + 2A2 + A3) 

(5.10) 

Because of the properties of the Fourier coefficients to leading N as discussed 

in the appendix, the two loop lattice gauge theory gives an identical 

answer but with coupling gR2. The lattice theory of SU(N) for leading N 

is a theory of noninteracting bound states like the continuum theory because 

the lattice is also restricted to planar topologies for leading N like the 

cant inuum . 
4 However for finite N 

4 !+ 
2 

NW1 + A$ 2A 
2 

(5.11) 

= J$%(V1 <lv2 )e 
-+gR2(A4+A3 

So that for large areas of intersection 

A2 F gR 
-2 

In N 

1 
2 

N 
-2 

+e 
-f g,Z _ iA 1 

(5.12) 

the amplitude deviates from the potential model which again shows the 

manifestation of additional forces as introduced by the lattice gauge 

formalism. 
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VI. THE CONTINUUM LIMIT 

In this section we discuss the lattice gauge theory in the limit of 

zero lattice spacing (a -+ 0). As mentioned in the introduction the limit 

depends on the quantity being held fixed as a - 0. For definiteness we 

will consider only the U(i) gauge model although our conclusions apply 

equally well to any SUCN) gauge model except in the limit N 4 m, g2N 

fixed. 

The 2n quark coupling constant is given by 

gn2 
= 2 -- 

2 
a 

zn ‘z 2 

ln ( ) 2go a 
1 

zO 

( ) 
2g02a2 

(6.1) 

The extra couplings generated solely by the lattice which are not present 

in the continuum are given by 

2 2 2 2 
g en = ngl -gn (6.2) 

2 2 
The dimensionless coupling is defined by a0 : go a /4~. 

Now we consider several cases where a different quantity is held 

fixed each time while taking the limit a d 0. AS a first example, hold 

the bare coupling go fixed. Because the two dimensional continuum has 

no coupling constant renormalization, we expect that keeping go fixed 

would give us the usual continuum, and indeed it does. In particular, 



lim 
a -CO 
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gP2 

: : 

p2g02 ‘! 

g : I, 2 = 0 
ep 

i 

‘yO J! i 
0 

fixed (6.3) 

all the additional lattice forces disappear, and the usual continuum theory 

is reproduced with coupling go. 

What would happen if we held fixed a physical 2n quark coupling 

constant gn2 for some n? In that case, the bare coupling g 
0 

would become 

a function of the lattice spacing. The limit would give 

lim 
a-0 

2 

_1 

80 

2 
gP 

2 
g ep 

“0 

gn2/n2 
1 

p2gn2/ n2 

: 

gn2 
fixed (6.4) 

0 

0 

Again, all the additional lattice forces disappear, and the usual continuum 

theory is reproduced with coupling g,/n. 

But what would happen if there were, say, some mass or coupling 

constant which vanished in the previous limit and was inadvertantly held 
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fixed? An example of this might occur in the four dimensional theory if 

it really gave a pion mass which vanished in the “true” continuum. As a 

specific example, let one of the additional lattice couplings gen2 be held 

fixed. In this case 

lim 
a*0 

’ ‘en2 fixed (6. 5) 

Notice that cue vanishes, but not fast enough to allow finite limits for 

go2 

2 
and g’ . The resulting theory appears to be a perfectly well-defined 

P 

Euclidean invariant theory. 

VII. CONCLUSIONS AND DISCUSSION 

In this paper, we have shown that when either the bare coupling go2 

or a renormalized coupling 
2 

g 
P 

is held fixed, the lattice gauge theories 

U(1) and SU(N) for N * 00, g2N fixed in two dimensions become the usual 

continuum Schwinger and ‘t Hooft models, respectively, in the limit of 

vanishing lattice spacing. Our method consisted of calculating the 

contributions of quark loops to all orders in the gluon coupling and comparing 

them for the lattice gauge theory and for a latticized potential version 

of the continuum theory. We have, of course, assumed that the latticized 
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potential theory becomes the continuum potential theory for vanishing 

lattice spacing holding its bare coupling fixed. However, we regard this 

last assumption as harmless because this form of discretization is a 

way of defining the continuum functional path integrals, except possibly 

for the (albeit necessary) method we used for discretizing the fermion 

fields. Our interest was whether the additional modifications 

to the discrete (lattice) theory made by the Wilson formalism (manifest 

gauge invariance of the action, integration over only one cycle of the group, 

etc. ) would introduce any modification in comparison to continuum theory. 

We have shown that if the correct physical quantities are held fixed, there 

are no modifications in the two dimensional theories in the limit a + 0. 

We also showed that, in general, the lattice introduces additional forces not 

present in the usual continuum. These forces make the lattice S matrix 

qualitatively different than the continuum S matrix, particularly in strong 

coupling. The extra forces go away only for vanishing lattice spacing and 

holding a proper physical constant fixed. Consequently, in order to have 

a lattice theory which has the same physics as the continuum, additional 

terms must be added to the lattice gauge action to compensate these 

additional forces. For finite lattice spacing, the simple box plus quark 

link action does not have the same physics as the continuum. 
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As usual, the continuum limit of the lattice gauge theory is controlled 

by the existence of critical points in the renormalization group. The two- 

dimensional gauge theories are asymptotically free and the renormalization 

group is very simple. In this case, holding physical couplings fixed and 

sending the lattice spacing to zero forced the bare coupling to its ultraviolet 

(short distance ) fixed point. The existence of an ultraviolet fixed point 

plays a crucial role in the four dimensional case. We expect that if the 

theory has an ultraviolet fixed point at the origin, then we expect that 

taking the continuum limit holding the right physical couplings fixed will 

force us to the critical behavior of the lattice theory. 
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APPENDIX 

In this appendix, we list some of the useful properties of the Fourier 

coefficients and the renormalized charge for the U(1) and SU(N) gauge 

th 
groups. First consider the U(1) group. The character for the p- 

representation is given by 

Xp (0) = e 
ip6 

(A. 1) 

Letting X = 1 2 2 , the coefficients are: 

80 a 

zpw = & I 

2Tr 
de e 

ipOex cos 8 
(A. 2) 

0 
= IpW 

th 
where Ip(x) is a modified Bessel function of p-order with asymptotic 

properties 

IpM - 

1 

$ (xmP + . . . x << 1, 
. 

(A.3) 
X 

e 
Ymz ( 

4p2-I f- 
1-8x 0.. 

) 
x >> 1. 

Consequently, the renormalized charge for U(1) has the behavior 

2 
g0 goa << i 

2 
gR 1 (A-4) 

U(1) 

f In g02a2 goa>> 1 . 
a 
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Consider the SU(N) lattice gauge theory. We denote representations 

by their dimension d . 
P 

The representation can also be characterized 

in terms of a set of N number f., . . . ,fN which determine p. 
1 The character 

th 1 
of the p-representation is 

(A 5) 

5 IN 
where 1 

j 
= fj +N - j, c(a, ,..., 1N) = Ic , . . . , E 1, 

+ i 4. 
E = (cl, . . ~ , eN), ei = e 1, and A = 5 (N - 1, . . . , 1) under the 

constraint 7 $i = 0. The Fourier coefficients are given by 

212 
Zp = dp-%--‘[ d$ l.. . d$N 6( F4i) IA 12Xp4(b)e 1 . (A. 6) 

0 

where V N 
is the group volume. We have the following relationships between 

the coefficients: ZN = ZR where z is the antiquark representation, 

a Zo/ aX = N ZN + N ZG, or in general 

an n 

- z. 
=Z;dZ 2I b - m)N, mN 

axn PPpm=O p 
tA. 7 ) 

KN, ai? th 
where C is the Clebsch-Gordon coefficient for finding the p’- 

P 
representation in the (N@jK@ (E@)” product representation. The 

renormalized charge has the behavior 

gR 2N 

go2N g,a << 1, 
(A.8) 

+n go2N goa >> I 
a c 
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N-- 00 keeping go2 N fixed and observe that the ratios of Fourier 

!nts are all of the order of 1, Zp/ Z. = f (go 
2 

N). We find 

,N - 1) = ‘N(N + 1)’ 
so that Z which is 

N(N - 1) 
= z 

N(N + 1) 

2 2 2 2 

8Zo~ 

dto ZN2 _ I, and - 
ax2 

= 4N2ZN2 _ 1 . Now consider 

he left-hand side is &i/N) then the expression in the brackets is 

‘). Thus to leading order in 1/N, 
2h2 - 1 

z 
0 

eral.ifgrpi) = q.dp2) = &?N K, then Zpi = Zp2 = Zo(ZN/ Zo!K. 
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FIGURE CAPTIONS 

Fig. 1: A single quark loop on the lattice. 

Fig. 2: The value of n for insertion of a gy, vertex (represented 

by an X). 

Fig. 3: Combining boxes to give Migdal’s Theorem. 

Fig. 4: Contours for calculating <x p(v+)>. 

Fig. 5: Qualitative behavior of the renormalized charge. 

Fig. 6: U(1) interacting loops for (a) the lattice gauge theory and 

(b) - (d) the lattice potential model. 
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